335 research outputs found

    A multivariate multifractal model for return fluctuations

    Full text link
    In this paper we briefly review the recently inrtroduced Multifractal Random Walk (MRW) that is able to reproduce most of recent empirical findings concerning financial time-series : no correlation between price variations, long-range volatility correlations and multifractal statistics. We then focus on its extension to a multivariate context in order to model portfolio behavior. Empirical estimations on real data suggest that this approach can be pertinent to account for the nature of both linear and non-linear correlation between stock returns at all time scales.Comment: To be published in the Proceeding of the APFA2 conference (Liege, Belgium, July 2000) in the journal Quantitative Financ

    Nonparametric Markovian Learning of Triggering Kernels for Mutually Exciting and Mutually Inhibiting Multivariate Hawkes Processes

    Full text link
    In this paper, we address the problem of fitting multivariate Hawkes processes to potentially large-scale data in a setting where series of events are not only mutually-exciting but can also exhibit inhibitive patterns. We focus on nonparametric learning and propose a novel algorithm called MEMIP (Markovian Estimation of Mutually Interacting Processes) that makes use of polynomial approximation theory and self-concordant analysis in order to learn both triggering kernels and base intensities of events. Moreover, considering that N historical observations are available, the algorithm performs log-likelihood maximization in O(N)O(N) operations, while the complexity of non-Markovian methods is in O(N2)O(N^{2}). Numerical experiments on simulated data, as well as real-world data, show that our method enjoys improved prediction performance when compared to state-of-the art methods like MMEL and exponential kernels

    Modelling fluctuations of financial time series: from cascade process to stochastic volatility model

    Full text link
    In this paper, we provide a simple, ``generic'' interpretation of multifractal scaling laws and multiplicative cascade process paradigms in terms of volatility correlations. We show that in this context 1/f power spectra, as observed recently by Bonanno et al., naturally emerge. We then propose a simple solvable ``stochastic volatility'' model for return fluctuations. This model is able to reproduce most of recent empirical findings concerning financial time series: no correlation between price variations, long-range volatility correlations and multifractal statistics. Moreover, its extension to a multivariate context, in order to model portfolio behavior, is very natural. Comparisons to real data and other models proposed elsewhere are provided.Comment: 21 pages, 5 figure

    Uncovering latent singularities from multifractal scaling laws in mixed asymptotic regime. Application to turbulence

    Full text link
    In this paper we revisit an idea originally proposed by Mandelbrot about the possibility to observe ``negative dimensions'' in random multifractals. For that purpose, we define a new way to study scaling where the observation scale τ\tau and the total sample length LL are respectively going to zero and to infinity. This ``mixed'' asymptotic regime is parametrized by an exponent χ\chi that corresponds to Mandelbrot ``supersampling exponent''. In order to study the scaling exponents in the mixed regime, we use a formalism introduced in the context of the physics of disordered systems relying upon traveling wave solutions of some non-linear iteration equation. Within our approach, we show that for random multiplicative cascade models, the parameter χ\chi can be interpreted as a negative dimension and, as anticipated by Mandelbrot, allows one to uncover the ``hidden'' negative part of the singularity spectrum, corresponding to ``latent'' singularities. We illustrate our purpose on synthetic cascade models. When applied to turbulence data, this formalism allows us to distinguish two popular phenomenological models of dissipation intermittency: We show that the mixed scaling exponents agree with a log-normal model and not with log-Poisson statistics.Comment: 4 pages, 3 figure

    Hydrodynamic turbulence and intermittent random fields

    Full text link
    In this article, we construct two families of nonsymmetrical multifractal fields. One of these families is used for the modelization of the velocity field of turbulent flows.Comment: 25 Pages; to appear in Communications in Mathematical Physic

    Lognormal scale invariant random measures

    Full text link
    In this article, we consider the continuous analog of the celebrated Mandelbrot star equation with lognormal weights. Mandelbrot introduced this equation to characterize the law of multiplicative cascades. We show existence and uniqueness of measures satisfying the aforementioned continuous equation; these measures fall under the scope of the Gaussian multiplicative chaos theory developed by J.P. Kahane in 1985 (or possibly extensions of this theory). As a by product, we also obtain an explicit characterization of the covariance structure of these measures. We also prove that qualitative properties such as long-range independence or isotropy can be read off the equation.Comment: 31 pages; Probability Theory and Related Fields (2012) electronic versio

    Fractal Dimensionof the El Salvador Earthquake (2001) time Series

    Full text link
    We have estimated multifractal spectrum of the El Salvador earthquake signal recorded at different locations.Comment: multifractal analysi

    Noncommutative space-time models

    Full text link
    The FRT quantum Euclidean spaces OqNO_q^N are formulated in terms of Cartesian generators. The quantum analogs of N-dimensional Cayley-Klein spaces are obtained by contractions and analytical continuations. Noncommutative constant curvature spaces are introduced as a spheres in the quantum Cayley-Klein spaces. For N=5 part of them are interpreted as the noncommutative analogs of (1+3) space-time models. As a result the quantum (anti) de Sitter, Newton, Galilei kinematics with the fundamental length and the fundamental time are suggested.Comment: 8 pages; talk given at XIV International Colloquium of Integrable Systems, Prague, June 16-18, 200
    • …
    corecore